Skip to menu Skip to content Skip to footer
Course profile

Biomaterials: Materials in Medicine (BIOE4305)

Study period
Sem 2 2024
Location
St Lucia
Attendance mode
In Person

Course overview

Study period
Semester 2, 2024 (22/07/2024 - 18/11/2024)
Study level
Undergraduate
Location
St Lucia
Attendance mode
In Person
Units
2
Administrative campus
St Lucia
Coordinating unit
Chemical Engineering School

Introduction to biomaterials science, artificial organs, prosthetic devices, regulatory testing and evaluation of new biomaterials. Polymeric, ceramic, metallic and composite biomaterials.

Biomaterials is one of the most rapidly-expanding technological fields of recent decades. It draws on physical sciences, engineering, physiology and clinical science disciplines to understand and ensure the performance of any substance that has been engineered to interact with biological systems for a medical purpose. From total organ/joint replacement, wound dressings, dental repairs and controlled drug delivery systems to advances in biomimetic engineering and regenerative medicine, almost every human being on earth will be exposed to biomaterials during their lifetime. The course is designed to explore the entire process of “Biomaterials Translation” from scientific discoveries and intellectual property protection, to the founding of start-ups and associated funding, technological and regulatory hurdles that need to be overcome to take new biomaterials technologies to market. Assessment comprises both project, team-based and individual tasks, and makes use of the UQ library’s excellent scientific journal and patent databases. Students will be immersed in real technology case studies to teach them how researchers, technologists, government regulatory bodies and investors cooperate. Lectures will cover the traditional classes of biomaterials, biocompatibility and testing, with tutorials, practicals and additional research-based learning activities exploring and sharing information about innovation and commercialisation in the biomaterials and medical device sector.

Course requirements

Assumed background

Basic biology and materials science are recommended in order to perform well in this course.

Recommended prerequisites

We recommend completing the following courses before enrolling in this one:

CHEE1001 or BIOE1001

Incompatible

You can't enrol in this course if you've already completed the following:

CHEE4305 and CHEE7325

Course contact

Course staff

Lecturer

Tutor

Timetable

The timetable for this course is available on the UQ Public Timetable.

Additional timetable information

L01 St Lucia -ᅠMon 2 PM - 4 PM, Hawken Building, Room 50-N202

T01 St Lucia -ᅠThu 8 AM - 10 AM, ModWest Building, Room 11A-131

P01 St Lucia - Thu or Fri between 12 PM - 6 PM, Andrew N. Liveris Building, Labs 542 and 641 (Weeks 5-8 only)

Aims and outcomes

The aim of the course is to allow students to explore the entire process of “technology evolution” from scientific discoveries and intellectual property protection to the founding of start-ups and associated funding, technological and regulatory hurdles required to take new biomaterials technologies to market. Students will be immersed in real technology case studies to teach them how researchers, technologists, government bodies and investors cooperate.ᅠ

In completing this course, we anticipate that the students will:

  1. Understand both the historic and contemporary role of biomaterials in medicine, as well as appreciate how key future developments evolve.
  2. Understand the unique biomaterial design requirements that are sitting at the interface between physical science, engineering, and medicine disciplines.
  3. Appreciate and understand the "technology evolution" processes arising within complex R&D/technological networks in order to successfully discover, design, develop and commercialise new biomaterials.ᅠ
  4. Appreciate and understand the key types of biomaterials used in medicine, their requisites for medical applications, as well as mechanical/chemical/biological properties of biomaterials.
  5. Have improved teamwork skills by cooperating effectively with a group of students from different disciplines and backgrounds on the Major Literature Review.
  6. Have developed new transferrable professional skills (diverse information retrieval and synthesis, broader understanding of biomedical technology development and the importance of many stakeholders along the way), applicable to academic or industrial environments alike.ᅠ

Learning outcomes

After successfully completing this course you should be able to:

LO1.

Demonstrate a knowledge of biomaterial requirements in medical devices, understand the properties of biomaterials used in medical devices, and be able to engineer solutions for the use of biomaterials in medical devices.

LO2.

Conduct a detailed scientific literature search and critique the literature to generate a report of the historical and current state of play of research.

LO3.

Conduct a comprehensive IP search and generate an insightful report of IP relating to a biomaterial or medical device.

LO4.

Demonstrate effective spoken and written communication to a non-scientifically literate audience, or an audience with diverse backgrounds.

LO5.

Manage personal independent research and learning through pro-active and responsible use of resources such as online course material, library databases and internet.

LO6.

Analyse scenarios and develop solutions to multidisciplinary biomaterials problems.

LO7.

Work and cooperate effectively in a team consisting of students from a range of academic disciplines and personality types.

LO8.

Demonstrate an understanding of the social and ethical context of biomaterials in society that set medical related biomaterials apart from other material engineering disciplines.

Assessment

Assessment summary

Category Assessment task Weight Due date
Paper/ Report/ Annotation Biomaterials Innovation (2000-2024) Report 15% Individual

16/08/2024 2:00 pm

Quiz Quiz 1, 2 & 3
  • Hurdle
  • Identity Verified
45% Individual (Hurdle*)

Biocompatibility Quiz#1: 22/08/2024 8:00 am

Mechanical Properties of Biomaterials Quiz#2: 19/09/2024 8:00 am

Major Biomaterials Families Quiz#3: 17/10/2024 8:00 am

Quiz 1 & 2: 1st half of normal tutorial timeslot.

Quiz 3: Run in normal tutorial timeslot.

Paper/ Report/ Annotation, Practical/ Demonstration Prac Report 10% Individual

13/09/2024 2:00 pm

Paper/ Report/ Annotation Major Literature Review (MLR)
  • Team or group-based
30% Group

4/11/2024 2:00 pm

A hurdle is an assessment requirement that must be satisfied in order to receive a specific grade for the course. Check the assessment details for more information about hurdle requirements.

Assessment details

Biomaterials Innovation (2000-2024) Report

Mode
Written
Category
Paper/ Report/ Annotation
Weight
15% Individual
Due date

16/08/2024 2:00 pm

Task description

Task Description:

Using your library and broader online research skills, you are required to research and report on a topic that you will be provided with, in the area of "Biomaterials Innovation over the period 2000-2024". You are expected to describe the innovative biomaterials solution that was developed for a given application, including;

  • Challenges overcome
  • Any evidence of failures or recalls
  • Key innovative aspects and nature of innovation (e.g. chemistry, structure, processing, design, biology, surgical procedure, technique or tool(s))
  • Biomaterial/ device details, and
  • Company/ product details

You should also explain not only where 20+ years of innovation have led us to today, but also what might we expect to emerge over the next 20 years.

  • It should be noted that the topics as given are selected to showcase innovation during the 20+ year period 2000-2024, where "Innovation can refer to something new or to a change made to an existing product, idea, or field". For example, one might say that the first telephone was an invention, the first cellular telephone either an invention or an innovation, and the first smartphone an innovation.
  • For a biomaterial employed in an implantable medical device, innovations may have happened in the chemistry, composition, structure (morphology), processing (manufacturing methods), design and surgical procedure or technique. This can extend further into methods of packaging, sterilization and storage etc.
  • Much can be learned from device failures and recalls.

Additional Notes

  • Strictly 5 pages limit for the body of the report. Table of contents, reference list, appendices, and title pages are not included in page count. Pages in the body of the report after page 5 will not be included in the grading assessment.
  • You may include up to two half page figures. They must be relevant, referenced if appropriate, and utilised in the body of the text to improve communication with the reader.
  • Plagiarism is in violation of UQ policy. The matter will also be passed to the School of Chemical Engineering for assessment, which may result in disciplinary action taken by the School.
  • APA referencing style must be used throughout all assessment items in this course for all referencing, in-text references, and reference lists. Failing to reference completely may result in accusations of plagiarism, and marks will be lost for insufficient or incorrect referencing.
  • Pages are to be formatted so that there is a 2 cm margins left and right, 2.5 cm header and footer. Text must be in professional font style of your choosing with a size equivalent to Times New Roman 12 pt. Paragraphs must have a 1.5 line spacing, 6 pt. spacing between paragraphs, no hanging indents, and alignment justified.

Use of AI (Artificial Intelligence)

This assessment task evaluates students' abilities, skills and knowledge without the aid of Artificial Intelligence (AI). Students are advised that the use of AI technologies to develop responses is strictly prohibited and may constitute student misconduct under the Student Code of Conduct.

Submission:

  • Save your file in either Word or pdf using the naming convention BIOE4305_Innovation_Report_(your surname) _(your student #).
  • Submit electronically through Turn-it-in using the Blackboard link in the Assessment, Biomaterials Innovation (2000-2024) Report folder.

Marking & Task Breakdown:

See the associated marking rubric on Blackboard.

Submission guidelines

Submitted electronically through Turn-it-in using the Blackboard link.

Deferral or extension

You may be able to apply for an extension.

The maximum extension allowed is 28 days. Extensions are given in multiples of 24 hours.

Late submission

Assessments must be submitted on or before the due date. Late submissions of assessment items will only be accepted if approval for late submission has been obtained prior to the due date.

Penalties Apply for Late Submission

Refer PPL Assessment Procedure Section 3 Part C (48)

Quiz 1, 2 & 3

  • Hurdle
  • Identity Verified
Mode
Written
Category
Quiz
Weight
45% Individual (Hurdle*)
Due date

Biocompatibility Quiz#1: 22/08/2024 8:00 am

Mechanical Properties of Biomaterials Quiz#2: 19/09/2024 8:00 am

Major Biomaterials Families Quiz#3: 17/10/2024 8:00 am

Quiz 1 & 2: 1st half of normal tutorial timeslot.

Quiz 3: Run in normal tutorial timeslot.

Task description

Quiz 1 - 15%: Biocompatibility is a core module, with lecture and tutorial material to be tested with a Quiz in Week 5. This is an open book, invigilated in-class Quiz.

Quiz 2 - 15%: Biomaterials mechanical properties is a core module to be tested with a Quiz in Week 9. This includes the Week 6 lecture and tut, plus the Week 5, 6, 7 or 8 practical demonstrations. This practical demonstration will be performed in-person. This is an open book, invigilated in-class Quiz.

Quiz 3 - 15%: Families of biomaterials (Polymers, Composites, Metals and Ceramics) is a core module, with lecture and tutorial material from weeks 7-12 to be tested with a final in-class Quiz. This is an open book, invigilated in-class Quiz. There will be 10 mins reading time, followed by a 90 minute Quiz run during the Week 12 Tutorial slot. This is an open book, invigilated in-class Quiz.

This assessment task is to be completed in-person. The use of generative Artificial Intelligence (AI) or Machine Translation (MT) tools will not be permitted. Any

attempted use of AI or MT may constitute student misconduct under the Student Code of Conduct.

Hurdle requirements

Hurdle - students must pass the aggregate mark for Quizzes 1+2+3 combined.

Submission guidelines

Quiz will be run on Blackboard in the classroom.

Deferral or extension

You may be able to defer this exam.

Prac Report

Mode
Activity/ Performance, Written
Category
Paper/ Report/ Annotation, Practical/ Demonstration
Weight
10% Individual
Due date

13/09/2024 2:00 pm

Task description

After attending the two (2) prac demonstrations (Mechanical Testing of (1) TPU pacemaker lead insulation and (2) injectable dermal filler hydrogel) in either Group 1 (Week 5), Group 2 (Week 6), Group 3 (Week 7), and if necessary Group 4 (Week 8) - you will be required to submit your report answering several questions pertaining to the raw data provided.

The material covered in this prac is also examinable in Quiz #2 in Week 9.

Use of AI (Artificial Intelligence)

This assessment task evaluates students' abilities, skills and knowledge without the aid of Artificial Intelligence (AI). Students are advised that the use of AI technologies to develop responses is strictly prohibited and may constitute student misconduct under the Student Code of Conduct.

Submission guidelines

Submitted electronically through Turn-it-in using the Blackboard link.

Deferral or extension

You may be able to apply for an extension.

The maximum extension allowed is 28 days. Extensions are given in multiples of 24 hours.

Late submission

Assessments must be submitted on or before the due date. Late submissions of assessment items will only be accepted if approval for late submission has been obtained prior to the due date.

Penalties Apply for Late Submission

Refer PPL Assessment Procedure Section 3 Part C (48)

Major Literature Review (MLR)

  • Team or group-based
Mode
Written
Category
Paper/ Report/ Annotation
Weight
30% Group
Due date

4/11/2024 2:00 pm

Other conditions
Peer assessment factor.

See the conditions definitions

Task description

Task Summary: Key Focus – A factual, detailed review and analysis of Biomaterials Development for a current medical device product that is on the market today.

Based on the topic provided, a Major Literature Review (MLR) must be delegated and compiled into a professional group report. The group must immerse themselves in the following key facets:

Science, IP & Regulatory, People and Organisation, Timeline, Competitors and Report Quality. The associated full Task Description and Marking Rubric clearly breaks down these sections of the report with the associated allocation of marks.

Each team is required to prepare a literature review that examines the most significant and relevant scholarly work and intellectual property (IP) literature in the topic area, highlighting key background information and recent progress for the chosen technology. The aim of the literature review is to provide a comprehensive picture of the surrounding knowledge, while ensuring the right balance between the breadth, depth, and concision of writing.

Use of AI (Artificial Intelligence)

This assessment task evaluates students' abilities, skills and knowledge without the aid of Artificial Intelligence (AI). Students are advised that the use of AI technologies to develop responses is strictly prohibited and may constitute student misconduct under the Student Code of Conduct.

Criteria & Marking

A more detailed assessment criteria and marking sheet can be found on Blackboard.

Submission guidelines

Submitted electronically through Turn-it-in using the blackboard link.

Deferral or extension

You may be able to apply for an extension.

The maximum extension allowed is 28 days. Extensions are given in multiples of 24 hours.

Late submission

Assessments must be submitted on or before the due date. Late submissions of assessment items will only be accepted if approval for late submission has been obtained prior to the due date.

Penalties Apply for Late Submission

Refer PPL Assessment Procedure Section 3 Part C (48)

Course grading

Full criteria for each grade is available in the Assessment Procedure.

Grade Description
1 (Low Fail)

Absence of evidence of achievement of course learning outcomes.

Course grade description: Typically an overall mark of <20. Shows lack of understanding of the fi eld of biomaterials (as per grade 2), as well as failure to complete assessment tasks, attend lectures, and tutorials.

2 (Fail)

Minimal evidence of achievement of course learning outcomes.

Course grade description: Typically an overall mark of 20-44. Shows lack of understanding of the field of biomaterials, inadequate performance and involvement in quizzes, assignments and practical. Grade scores below 3 indicate a marked lack of professional competence in the course material.

3 (Marginal Fail)

Demonstrated evidence of developing achievement of course learning outcomes

Course grade description: Typically an overall mark of 45-49. Falls short of satisfying all basic requirements for a Pass. Shows poor understanding of the field of biomaterials, inadequate performance in quizzes, assignments and practical. Grade scores of 3 indicate a lack of professional competence in the course material.

4 (Pass)

Demonstrated evidence of functional achievement of course learning outcomes.

Course grade description: Typically an overall mark of 50-64 and at least a 50% pass mark for In Class Quizzes (Identity Verified Assessment Hurdle). The grade demonstrates satisfactory understanding of the field of biomaterials, good all-round performance and involvement in quizzes, assignments and practical, as well as basic level of problem solving skills and satisfactory quality of written assignment work.

5 (Credit)

Demonstrated evidence of proficient achievement of course learning outcomes.

Course grade description: Typically an overall mark of 65-74 and at least a 50% pass mark for In Class Quizzes (Identity Verified Assessment Hurdle). The grade demonstrates good understanding of the field of biomaterials and some level of cross-disciplinary understanding as evidenced from assessment. The student has demonstrated good problem solving skills, good involvement in teamwork, quizzes, assignments and practical, and a good quality of written assignment work, including adequate referencing and a some critical analysis of the literature.

6 (Distinction)

Demonstrated evidence of advanced achievement of course learning outcomes.

Course grade description: Typically an overall mark of 75-84 and at least a 50% pass mark for In Class Quizzes (Identity Verified Assessment Hurdle). The grade demonstrates very good understanding of the field of biomaterials. The student has demonstrated excellent cross-disciplinary understanding as evidenced in all aspects of assessment, as well as very good problem solving skills, very good team collaboration and involvement, a very good quality of written assignment work including correct referencing and a discerning, critical analysis of the literature. The grade reflects excellent involvement in class and engagement during learning activities.

7 (High Distinction)

Demonstrated evidence of exceptional achievement of course learning outcomes.

Course grade description: Typically an overall mark of >=85 and at least a 50% pass mark for In Class Quizzes (Identity Verified Assessment Hurdle). The grade demonstrates critical and deep understanding of the field of biomaterials. Student has embraced and demonstrated excellent cross-disciplinary understanding as evidenced in all aspects of assessment, as well as demonstrated creative problem solving skills, excellent team collaboration and involvement, and an excellent quality of written assignment work, including correct and thorough referencing and a discerning and sophisticated critical analysis of the literature.

Additional course grading information

The In Class Quizzes, run during tutorials, will be considered an Identity Verified Assessment Hurdle needing a 50% pass mark for students to pass this course.

Supplementary assessment

Supplementary assessment is not available for some items in this course.

Not all of the assessment components of this course may be re-assessed with supplementary assessment. A grade of 3 or N does not guarantee that supplementary assessment may be undertaken for this course, however students may apply.

Refer to my.UQ for how to apply for supplementary assessment.

Additional assessment information

Learning resources

You'll need the following resources to successfully complete the course. We've indicated below if you need a personal copy of the reading materials or your own item.

Library resources

Find the required and recommended resources for this course on the UQ Library website.

Additional learning resources information

Public domain information, e.g. media reports or direct communications with Biomaterials-related experts.

Learning activities

The learning activities for this course are outlined below. Learn more about the learning outcomes that apply to this course.

Filter activity type by

Please select
Clear filters
Learning period Activity type Topic
Week 1

(22 Jul - 28 Jul)

Lecture

Introduction to biomaterials

(Part A) Course introduction, structure, concepts, learning objectives, group conduct and expectations, (Part B) Biomaterials history (Prof Darren Martin).

Tutorial

Advanced literature search skills

Tute 1: Advanced literature research skills. Team allocation.

Learning outcomes: L02, L03, L05, L07

Week 2

(29 Jul - 04 Aug)

Lecture

Biomaterials Case Study #1

Haemostatic wound dressings (These real biomaterials project case studies are designed to give depth and meaning to the Major Literature Review assessment) (Dr Amanda Kijas).

Tutorial

Medical device demonstration session

Tute 2: Hands-on real medical device “show-and-tell” session.

Week 3

(05 Aug - 11 Aug)

Lecture

Biocompatibility #1

Overview of biocompatibility, key definitions and concepts, inflammation, wound healing, foreign body response. Biocompatibility is a core module to be tested with a Quiz in Week 5 (Dr Aswathi Gopalakrishnan).

Tutorial

Biocompatibility #1

Tute 3: (A) Biocompatibility #1, (B) Innovation Report support.

Week 4

(12 Aug - 18 Aug)

Lecture

Biocompatibility #2

Introduction to the immune system (host response), biocompatibility testing, introduction to toxicity. Biocompatibility is a core module to be tested with a Quiz in Week 5 (Dr Aswathi Gopalakrishnan).

Tutorial

Biocompatibility #2

Tute 4: (A) Biocompatibility #2, (B) Innovation Report support.

Multiple weeks

From Week 5 To Week 8
(19 Aug - 15 Sep)

Practical

Mechanical Testing of Biomaterials Practical

Mechanical Testing of (1) TPU pacemaker lead insulation and (2) injectable dermal filler hydrogel.

Week 5

(19 Aug - 25 Aug)

Lecture

Biomaterials discovery, design & development and commercialisation

An introduction to the complex full process of developing a new biomaterial - a global view (Prof Darren Martin).

Week 6

(26 Aug - 01 Sep)

Lecture

Mechanical properties of biomaterials

Biomaterials mechanical properties is a core module to be tested with a Quiz in Week 9 (Prof Darren Martin).

Tutorial

Mechanical properties of biomaterials

Tute 6: (A) Mechanical properties of biomaterials, (B) Assistance with team Major Literature Review.

Week 7

(02 Sep - 08 Sep)

Lecture

Polymeric biomaterials

Polymers - Arguably the class of biomaterials which has undergone the most sophisticated transformation during the last 30 years (Prof Darren Martin). Will be tested in the final Quiz in Week 12.

Tutorial

Polymeric biomaterials

Tute 7: (A) Covering this week's lecture content on polymers. (B) Assistance with team Major Literature Review.

Week 8

(09 Sep - 15 Sep)

Lecture

Composite biomaterials & anisotropic tissues

Composite and nano-composite biomaterials are becoming increasingly-important. Our bodies are also made of composites (Dr Nasim Amiralian). Will be tested in the final Quiz in Week 12.

Tutorial

Composite biomaterials & anisotropic tissues

Tute 8: (A) Covering this week's lecture content on composites and tissues. (B) Assistance with team Major Literature Review.

Week 9

(16 Sep - 22 Sep)

Lecture

Biomaterials Case Study #2

TPU Pacemaker lead insulation now implanted in more than 80 million patients worldwide (These real biomaterials project case studies are designed to give depth and meaning to the Major Literature Review assessment) (Prof Darren Martin).

Week 10

(30 Sep - 06 Oct)

Lecture

Metallic biomaterials

Metallic biomaterials is a core module (Dr Yuan Wang and Dr Jeffrey Venezuela). Will be tested in the final Quiz in Week 12.

Tutorial

Metallic biomaterials

Tute 10: (A) Covering this week's lecture content on metallic biomaterials. (B) Assistance with team Major Literature Review.

Week 11

(07 Oct - 13 Oct)

Lecture

Ceramic biomaterials + Biomaterials Case Study #3

(A) Ceramic biomaterials, (B) Case study #3, CeramTec alumina composite (Prof Darren Martin). Will be tested in the final Quiz in Week 12.

Tutorial

Ceramic biomaterials

(A) Covering this week's lecture content on bioceramics. (B) Support to prepare for final Quiz.

Week 12

(14 Oct - 20 Oct)

Lecture

Biomaterials Case Study #4

Developing an orthopaedic device: From the bench to the bedside (and back to the bench) (Prof Simon Cool).

Week 13

(21 Oct - 27 Oct)

Lecture

IP protection and "Patent-Paper-Pairs"

What are patents and why do we need them? We will workshop the important activity and relationship between "scientific" (eg university or clinical academic) and "technological" (eg private company, investor) networks, then how to best measure & communicate this in the Major Literature Review (Prof Darren Martin).

Learning outcomes: L02, L03, L04, L05, L06

Team Based Learning

Major Literature Review Team Support

Mentors will spend time with teams.

Learning outcomes: L02, L03, L04, L05, L06, L07, L08

Policies and procedures

University policies and procedures apply to all aspects of student life. As a UQ student, you must comply with University-wide and program-specific requirements, including the:

Learn more about UQ policies on my.UQ and the Policy and Procedure Library.

School guidelines

Your school has additional guidelines you'll need to follow for this course:

  • Safety Induction for Practicals

Course guidelines

Safety Induction for Practicals

Anyone undertaking courses with a practical component must complete the UQ Undergraduate Student Laboratory Safety Induction and pass the associated assessment.

Specific instructions, usage guidelines and rules for each of the undergraduate laboratories will be delivered as part of each course.

In some cases, students may be required to attend a specific face-to-face laboratory induction/training session.